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ABSTRACT

Digital communication systems suffer from the channel distortion problem which introduces

errors due to intersymbol interference. The solution to this problem is provided by equalizers which

use a training sequence to adapt to the channel. However in many cases in which a training sequence

is unfeasible, the channel must be adapted blindly. Most of the blind equalization algorithms known

so far have problems of convergence to local minima. Our intention is to offer an alternative

approach by using extended Kalman filtering and hidden Markov models. They seem to yield more

efficient algorithms which take the statistics of the transmitted sequence into consideration. The

theoretical development of these new algorithms is discussed in this thesis. Also these algorithms

have been simulated under different conditions. The results of simulations and comparisons with

existing systems are provided. The models for simulations are presented as MATLAB codes.
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I. INTRODUCTION

One of the major practical problems in digital communication systems is channel

distortion which causes errors due to intersymbol interference. Since the source signal

is in general broadband, the various frequency components experience different steady

state amplitude and phase changes as they pass through the channel, causing distortion

in the received message. This distortion translates into errors in the received sequence.

Our problem as communication engineers is to restore the transmitted sequence or,

equivalently, to identify the inverse of the channel, given the observed sequence at the

channel output. This task is accomplished by adaptive equalizers.

Typically, adaptive equalizers used in digital communications require an initial

training period, during which a known data sequence is transmitted. A replica of this

sequence is made available at the receiver in proper synchronism with the transmitter,

thereby making it possible for adjustments to be made to the equalizer coefficients in

accordance with the adaptive filtering algorithm employed in the equalizer design. When

the training is completed, the equalizer is switched to its decision directed mode.

However, there are practical situations where it would be highly desirable for a

receiver to be able to achieve complete adaptation without the cooperation of the

transmitter. This can be the case of an unfriendly receiver. Also in the communication

schemes where the channel parameters change with time, such as in mobile

communication systems, a training sequence must be repeated, leading to waste in the
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channel utilization. In these cases, the equalization must be performed without a training

sequence. In other words, the receiver is blind to the specific transmitted source

sequence.

The development of a parameter estimation algorithm appropriate for a blind

equalizer adaptation is hindered by the lack of the reference signal by most recursive

schemes. If the source sequence values were known to be independent and identically

distributed (i.e., i.i.d.) this property could be used to restore the output of the channel

by filters designed via estimation theory techniques. The presumption is that proper

deconvolution of the received signal would restore the source's transmitted sequence.

To provide the reader with a better understanding of our approach to the blind

equalization problem, we will review below the available blind equalization algorithms

and the problems with them.

A. AVAILABLE ALGORITHMS

1. Constant Modulus Adaptive Algorithm (CMA)

In the Constant Modulus Algorithm (CMA), the error between the magnitude

(modulus) of the equalizer output and a constant is recursively minimized, resulting in

an algorithm of complexity similar to the Least Mean Square (LMS). The motivation

for these methods is that by restoring the modulus of the received signal, the channel

impulse response should be implicitly estimated and intersymbol interference removed.

Since the magnitude of the equalizer output is independent of the absolute phase, the cost

2



functions in these algorithms are independent of the transmitted data sequence, and

hence, they are capable of blind deconvolving the received sequence.

The baseband model of a digital communication system consists of the

cascade connection of a linear communication channel and a blind equalizer, depicted in

Figure (1.1).

s(t) CHANNEL x(t) BLIND S
art) EQUALIZER i

a___ __ __) _ b(t)

Unobserved Received signal

data sequence

Figure 1.1 Model of Digital Communication System

The channel includes the combined effects of a filter at the transmitter, a

transmission medium, and a filter at the receiver. If we assume it to be linear and time

invariant or slowly varying, it is characterized by an unknown impulse response a (t).

The nature of the impulse response a (t) is determined by the type of the modulation

employed. We may thus describe the input-output relation of the channel by the

convolution sum

3



x(t:)=Ea,(t) s(t-i) V t(.I

where s (t) is the data sequence applied to the channel input and x (t) is the resulting

channel output. We assume that

(1.2)

This implies the use of an automatic gain control (AGC) that keeps the variance of the

channel output x (t) constant.

Let b (t) denote the impulse response of the ideal inverse filter, which is

related to the impulse response a (t) of the channel as follows

Ebk(t) a.,k(t) 6, (1.3)

where 6m is the Kronecker delta.

I if m=O6,m=O (1.4)
0 if imrO

An inverse filter defined in this way is "ideal" in the sense that it reconstructs the

transmitted data sequence s (t) correctly.

For the situation described herein, the impulse response a (t) is unknown

and therefore we cannot use Equation (1.3) to determine the inverse filter. Instead we

use an iterative deconvolution procedure to complete an approximate inverse filter

characterized by bi (t). The index i refers to the tap-weight number in the transversal

4



filter realization of the approximate filter [Ref. 1]. Thus at the nth iteration we have an

approximately deconvolved sequence.

y(t) =•b,(t) x(t-i) 15i'L

The convolution sum for the ideal inverse filter is infinite in extent in that the index i

ranges from -oo to oo. So we may rewrite Equation (1.5) as follows;

y(t)= b,(t) x(t-i), b,(t)=0 for 1i>L

or, equivalently

y(t) =Eb,(t) x(t-i) +E [b-i(t) -b•] x(t-i). (16
I i

If we let

v(t)=• b[(t)-bJ x(t-i), Q,=o for Iii>L (1.7)

then we can write

y(t:) =X(t) +v(t) 1 )

where the term v (t) is called "convolutional noise", representing the residual

intersymbol interference that results from the use of an approximate inverse filter.

The inverse filter output y (t) is next applied to a zero memory nonlinear

estimator producing estimate s (t) for the datum s (t) [Ref. 1]. We may thus write

5



/A(t)=9[y(t)] (1.9)

Ordinarily, we find that the estimate s (t) is not reliable enough.

Nevertheless, we may use it in an adaptive scheme to obtain a better estimate at iteration

t+1. We have a variety of linear adaptive filtering algorithms to perform this

estimation.

By looking at the problem, we note the following:

"* The ith tap input at the transversal filter at iteration t is x (t- i).

"* Viewing the nonlinear estimate s (t) as the desired response, and recognizing

that the corresponding transversal filter output is y (t), we may express the estimation

error for the iterative deconvolution procedure as

e (t) = § (t) - y (t) (1.10)

* The ith tap weight bi (t) at iteration t represents an old parameter estimate.

Accordingly, the updated value of ith tap weight at iteration t+1 is

computed as follows

b,(t+1)=b,(t)+A x(t-i) e(t), Vi (1.11)

where A is the step size parameter. Equations (1.5),(1.9),(1.10) and (1.11) constitute the

iterative deconvolution algorithm, known as CMA, for the blind equalization of a real

baseband channel. The ensemble averaged cost function corresponding to the tap weight

update Equation (1.11) is defined by

6



J(t)=E [ e2 (t)]
=E [(fi(t) -y(t) )'] (1.12)

=E [ (g(y(t))-y(t))2 ]

2. Decision-Directed Algorithm

Figure (1.2) presents a block diagram of the equalizer using the decision-

directed algorithm. The main difference between this algorithm and the CMA is the type

of zero memory nonlinearity imbedded in the equalizer. Specifically, the conditional

mean estimation of the blind equalizer is replaced by a threshold decision device, i.e.,

•(t) =dec[y(t)] . (1.13)

fo EQ___THRESHOLD b-t
EQULIERDECISION

I ~L-MS -

Figure 1.2 Block Diagram of Decision Directed Algorithm
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For Binary Phase Shift Keying (BPSK) we may write

+1 for symbol 1 (1.14)t _1 for symbol 0

so

dec[y(t)]=sgn[y(t)] (1.15)

where sgn (.) is the signum function.

The Sato and Godard algorithms [Ref. 1], which are generally used in

practice, are special cases of the CMA and decision-directed algorithms. For the Sato

Algorithm the zero memory nonlinear function can be shown to be

•(t) =y sgn[y(t)] (1.16)

where

E[s 2 (t)] (1.17)
E[Is(t)I(

For the Godard algorithm the zero memory nonlinear function is defined as

}(t)= y ly([yt) p--y(t2) - (1.18)
(t yTt7 [ yt I+R

where p is a positive integer, and R. is a positive real constant defined by

= [Is(t) 1p] (1.19)
E 8Is(t) JP]
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3. Higher-Order Moments

A different approach is to use higher order moments. Just to give the general

idea, we know that the data sequence s (t) transmitted through the channel is non-

gaussian. But the output sequence x (t),

x(t) = a1 (t) s(t-i) V t

defined in Equation (1.1), tends to be Gaussian if the length of the impulse response is

long enough (or at least more Gaussian than s (t) ). It turns out that the Gaussianity

of a sequence can be measured by the Kurtosis K (x (t) ) associated with x (t) [Ref.2],

defined as

(1.23)
K(x(t))= E {Jx(t)14 }- 2 E2 {Jx(t))11 }-_E {x(t)2 }2 ,

which uses the higher order moments ofx (t). It can be shown that K (x (t) ) =0 if and

only if x (t) is Gaussian. We can construct an algorithm by using the Kurtosis where

the impulse response of the equalizer b (t) is such that the filtered signal s (t) has a

maximum Kurtosis.

S()= bi (t) x (t-i) (1.24)
i

The maximization is very non-linear, and more information can be found in [Ref.2].
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B. PROBLEMS WITH THE EXISTING ALGORITHMS

1. Convergence to Local Minima

One of the major problems in the algorithms based on CMA, is convergence

to local minima. The ensemble averaged cost function is defined by Equation (1.12),

J(t)BE [ (g(y(t))-y(t))2 ]

where y (t) denotes the received sequence defined by Equation (1.5). In the linear case

of the LMS algorithm, the cost function is a quadratic (convex) function of the tap

weights and therefore has a unique minimum. By contrast, the cost function J (t) of

Equation (1.12) is a nonconvex function of the tap weights. This means that, in general,

the error performance surface of the iterative deconvolution procedure described herein

may have more than one local minimum. The nonconvexity of the cost function J (t)

arises from the fact that the estimate s (t), is produced by passing the linear combiner

output y (t) through a zero memory nonlinearity, and also because of y (t) itself a

function of the tap weights.

Therefore, nonoptimum fit of the convergent equalizer to the channel inverse

occurs, which lead us to low performance of the overall system. Many case studies have

been shown in [Ref.3]. Different algorithms have been tried, error functions have been

derived and the results have been shown as plots.

Also, if the channel drifts considerably, any decision-directed algorithm

looses track of the channel. So, their usage is limited in varying channel conditions.

10



In this thesis we address the problem of applying optimal estimation

techniques to the blind equalization problem. In Chapter II we introduce an algorithm

that uses extended Kalman filtering, in Chapter MI we discuss an alternate approach

which requires a bank of parallel Kalman filters, and in Chapter IV we consider a new

algorithm by using the hidden Markov models as well as the extended Kalman filtering,

that combines the equalizer with the decoder.

11



H. CMA LIKE BLIND EQUALIZATION ALGORiTHMS BY

USING EXTENDED KALMAN FILTERING

As we have discussed in the previous chapter blind equalization is an iterative

process mostly based on the optimal performance of prediction-error-based recursive

identifiers. Since local convergence and channel drifting constitute a problem to be

addressed; the effectiveness of the algorithms based on CMA, which are known so far,

is still object of discussion. These facts lead us to consider a class of blind equalization

algorithms based on a Kalman filtering approach. One of the approaches is essentially

a variation of the CMA algorithm which has been discussed previously. Since the

Kalman filter is used for a linear model of the signal, the use of the extended Kalman

filter which takes nonlinearities into account, and can still be used effectively in nonlinear

and linear models, is considered. By this approach, we hope to address the local

convergence problem, which is the main concern for the CMA algorithms. Before

presenting our approach we will briefly describe the derivation of the Kalman and

Extended Kalman Filter equations, in order to help to understand the main idea behind

the new algorithm.
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A. AN OUTLINE OF THE USE OF KALMAN FILTERS FOR STATE

ESTIMATION (DISCRETE TIME CASE)

1. Derivation of the Kalman Filter Equations

We consider the estimation of the states of a system as represented by a

system dynamics model of the form

x(t+l) =Ax(t) +BSs(t) +w(t) (2.1)

y(t) =C•.x(t) +v(t) (2.2)

in which w (t) represents a zero mean white noise disturbance intensity, and v (t) is

a zero mean white noise corrupting the sensor measurement signals, y (t). Their

autocorrelations are given by

E [w(t) ];E [w(t) wT (t)]= Q (m) (2.3)

E [v(t) ];E [v(t) vT(t) ]=Re (M)

where Rt and Qt are positive definite matrices and 8 (m) is the discrete-time impulse

function.

( i if m=0 (2.4)
) 0 if m*O

The term s (t) represents the system input, also A,, Bt and Ct are matrices of

appropriate dimension and possibly time varying.

13



To develop a filter that is recursive for real time applications we define the

following algorithm.

STEP 1 . Prediction of the state estimate based on the model and the

corresponding new measurement, Y (t).

R( t+l I t) =Arg( tj t) +tsis(t) (2.5)

STEP 2 : Update the estimation errors covariance matrix, Pt-

Pt(t+1 It) =AvP (tl t) A'+ Q (2.6)

STEP 3 : Recompute the correction (Kalman) gain, Kt.

K:(t+1) =Pt (t+11 t) Cr [ C ( t+1I t) Cr+R]- (2.7)

Here we can see that K. is determined by At, Ct, Ot and Rt only, not by the

measurement, y (t).

STEP 4 : Correction of estimate, based on the error between the new

measurement y (t+1) and its prediction, at time t+1.

9(t+11k) =Ctk(t+1 It) (2.8)

A(t+1It+1) =.k(t+1It) +zt;(t+l) [y(t+l) -9(t+llt)] (2.9)

STEP 5 : Correct the estimation errors covariance matrix, Pt.

P; (t+l I t+1) = [(I-K (t+1) C] Pt (t+l I t) (2.10)

Also initial conditions must be chosen carefully where

14



1(o10) =E[x(O)] (2.11)

is the best estimate at t- 0 and,

Po=cov[x(o)] =E[bx(o) -2(o00)){x(o) -k(oIo)IT] =o02 (2.12)

is a positive definite matrix generally in diagonal form. It shows the confidence on

initial conditions.

2. The Extended Kalman Filter Equations

The Kalman Filter was derived for the case of linear state and measurement

equations. This filter can be generalized to operate for nonlinear state equations and

measurement equations in a simple manner. This generalization will be referred to as

the Extended Kalman Filter.

A general non-linear system is in the form

x(t+1) =f(x(t) , s(t) , w(t) , t)

y(t+1) =f(x(t), v(t), t)

where all the variables are consistent with the linear case. Then,

E [w(t) ;E [w(t) wT (t)]- Q, 6(m)

E [v(t)] ;E [v(t) v T (t)] = R•8(m)

are also valid for this case. The Kalman filtering algorithm can be modified to account

for the nonlinearities as follows:

15



.R(t+1 It) =f (.R(tlt) S(t) ',Ot) (2.13)

where

af~ ~ ~~~~~h () (t -t Ut )(.5

where

at= agx(t) vt -0)

and

16



STEP 5;

PC; (t+1l t+1) = [I-Kt; (tcl) a] ipt ( t+1 t) k2.20)

for the initial conditions

A(0 10) =E [x(o) ]

and

P0=cov[x(0)]

B. SOLUTION TO BLIND EQUALIZATION PROBLEM BY KALMAN

FILTERING

In this section we show how the extended Kalman filtering can be applied for blind

equalization. Let Xt be the received signal, and Wt be the weights of the equalizer. The

purpose of the equalizer is to restore the original information sequence, i.e.,

rt=,D==St:

For a binary phase shift keying (BPSK) signal St: E {+1,-l} and the optimal

equalization is achieved when / Yt / 2_1. Assuming the weights constant in time, we

can write a state space equation for the observations as

17



Nt (t+2) =Wt: (t:) (2.21)

ly •[ -- W• C) X ( C X• ( C W e( ) .(2 .22)

As we can see, Equations (2.21) and (2.22) are similar to Equations (2.1) and (2.2) with

added nonlinearity.

By applying the extended Kalman f-.ter approach to the blind equalization, the new

algorithm becomes as follows:

Initial Conditions:

.R(0 10) =E [x((0)

Po=COV[X(O) ] =2,

STEP 1:

W( t+1 1k) --P(t) (2.23)

STEP 2 :

S( t+l I t) =Ip (t[ It) I T (2.24)

since

At:= f(w(t),O,O,t) =I (2.25)
aw(t)

18



xt(t+1) =PC (t+1 it) a" [ Pj((t+1 It) a÷+d] (2.26)

where

- = agq(w(t) , 0, t) t2 [w(t) ]T[xt (t) ] [xt:(t) ] T(22

aw(t)

B- ag(w(t)1 0, t) =0 (2.28)av(t)

A small error is needed for the Kalman filter in order to work properly, so a scaler value

d is added to the Kalman gain calculation at this step.

STEP 4:

:P, ( t+l I t) =W"(t) X, (t) Xr(t) W,, (t) (2.29)

ot:(t+1 It+1) =Wt (t+1 It) +rt (t+1) [1 -Pt(t+1 It) 2] (2.30)

STEP 5:

Pt ( t+11 t + 1) = I-Kt ( t+1) C]Pt; ( t + 11 t) (2.31)

C. FEASIBILITY OF THE BLIND EQUALIZATION BY KALMAN FLTERING

As we stated earlier, an admissible source-channel-equalizer combination need not

always result in an optimum fit of the convergent equalizer to the channel inverse. So,

19



we need to study the average behavior of the Kalman Filtering Equalizer algorithmu. In

this chapter we will consider only linear, time-invariant, stable, channel models and

binary real sources, as in [Ref.3]. The same steps have been followed, in order to make

a reasonable comparison for our new algorithm.

Figure (2.1) is an illustration of the performance with various fixed equalizer

parametrizations. A zero-mean, binary input sequence s (t) is applied to a channel.

The received signal x (t) is passed through the equalizer. To provide a sense of

"recent average" performance, the sequence of instantaneous squared recovery errors

between s and 9 is observed. An average squared error of zero or four denotes perfect

performance for a differentially encoded signal and an average squared error greater than

0.4 but less than 3.6 indicates a practically unacceptable error rate of over 10%.

5

(AX)I,0.8] (B)[,0]

Il

2

1(CX1,4.OIJ (D)[(.-O.8S

-Il,
0 100 200 300 400 500

Iterations
Figure 2.1 Smoothed Squared-Recovery-Error Time Histories for Different Fixed Equalizer
Parametrizations [( be, b, )l
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In Figure (2.1) all (bo,bl) settings (1,-0.8), (-1,0.8), (-1,0) and (1,-0.1) result in

perfect performance. The squared recovery errors associated with (1 ,-4.8) and (1,-0. 1)

are perfectly zeroed. The squared recovery error of 4 associated with (-1,0.8) and (-1,0),

helps provide the exact negative of s as i at each sample instant. If this figure is

compared with [Ref.3:Fig.3], it can be seen that the exponential rise does not appear for

the Kalman filtering algorithm since we did not use a smoothing filter. Also a (b0,bl)

setting of (0,1) can not be seen in Figure (2.1) since in this case the model is

undetermined.

As a second step, the performance of the Kalman filtering algorithm for different

initializations is studied. The (b0,b1 ) setting of (1 ,-4.6) is used for the equalizer then the

initial values on a circle of radius 2 is applied to the system. The results are shown in

Figure (2.2). If compared to [Ref.3:Fig.5 and 6] the Kalman filter does not exhibit the

2

0.5-
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-1.5-A

"-2 -1 0 2
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Figure 2.2 Parameter Trajectories for Blind Equalizer Adaptation by Kalman Filtering (Initial
Values on the Circle of Radius 2,Final Values in Black BoxesLocal Minima Are Small)
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amount of local minima shown by other CMA algorithms. For most of the initial

conditions the parameter vector converges to the global minima.

For a perfect solution to the problem, we need to understand the behavior of the

algorithm when convergence to local minima occurs. If we initialize (b0,bi) at (0,2) the

algorithm converges to a global minimum. The normalized squared recovery errors

between s and t for this case show a distribution equivalent to N(O,1). The situation is

shown in Figure (2.3).

0.4

mean--0.1829

0.3 var-1.492

0.2

0.1

'. Ik

-30 -20 -10 0 10

Figure 2.3 Distribuion of Squared Reoveay Errors When Algorithm Globlly Converges

Also, we can see from Figure (2.2) that there are initial conditions which lead to

local minima. As in the example of initialization (0.6,-1.9), the algorithm converges to

local minimum. In this case, the normalized squared error between s and t has a larger

mean and variance than the first case. Also, it does not show a normal situation. The
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situation is shown in Figure (2.4). This property can be used to determine the

convergence to a local minimum.

0.4

mean=4.299

0.3 var-40.2

0.2

0 ..... ,.,ngmlF1n b i]ff
-40 -30 -20 -10 0 10

Figure 2.4 Distribution of Squared Recovery Errors When Algorithm Locally Converges

The studies up to this step show that blind equalization algorithms using Kalman

filtering seem to work better than other algorithms in terms of convergence rate for

linear, time invariant, stable channel models and binary sources using BPSK. However

they still suffer from the local cc,&,vergence problem as seen for the CMA algorithms.
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M. BLIND EQUALIZATION ALGORITHM BY USING

PARALLEL KALMAN FILTERING

As seen in the previous chapter, the algorithm based on the extended Kalman filter

for blind equalization, suffers from the local convergence problem, as most of the other

CMA algorithms. For the algorithm to be applicable, we need to address this problem.

As a candidate solution we choose a particular parallel Kalman filtering approach, which

is described in detail in [Ref.4]. In this chapter, we will present this algorithm and

discuss the results of our studies with this algorithm.

A. DEVELOPMENT OF THE PARALLEL KALMAN FILTERING

ALGORITHM

This algorithm is an approximation to the optimum maximum a posteriori (MAP)

sequence estimator for a priori unknown channels. The sequence probabilities can be

computed using the innovations derived from a bank of Kalman filters.

In the discrete-time channel and signal model, x (t) denotes the output of a

matched filter at time t, s (t) is the current transmitted symbol and (an (t) represent

the effective time varying channel coefficients. For BPSK, the s (t) are real valued,

taking on values {+ 1 ,-1}. The channel coefficients an (t) represent the convolution of

the actual intersymbol interference (ISI) channel impulse response with that of a

prewhitening filter, which is included to insure that the additive noise samples, n (t),

are uncorrelated.
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N.

x(t)= a.(t) s(t-n)+On(t) (3.1)

The additive noise sequence is complex white Gaussian with variance or I and Nb+ 1 is

the length of the channel impulse response.

For convenience in the derivation, the following sequences are also defined for the

ith of M'+' possible sequences, where M is the symbol alphabet size:

The cumulative measurement sequence,

x,={x(t) ,X(t-1), .. x(o)}

"A cumulative data sequence,

Di,,={ di,(t), 4. (t-1),..ý. (0)}

"A data subsequence, comprising the data symbols associated with the channel

coefficient vector g (t) at time t,

Dj',ýv ={ (. ( t) k ,( t- ,. , 1) t -Nb).

In the development of the Kalman filter channel estimator, it is assumed that the

coefficient bn (t) evolve according to the following complex Gaussian

autoregressive(AR) process model

_b(t+1)=Fb(t)+w(t) , (3.2)

with the coefficient vector defined by
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1b(t)=[ b,(t),b 2 (t-1), ... ,bN.(O)] .

In Equation(3.2) E is the one step transition matrix and _w(t) is a white Gaussian

process with covariance matrix Q.

The optimum MAP sequence estimator can be written in the following recursive

form for the assumed channel and signal models

p (Dj, I X,) =1p (x (t) ID',X-)p(j- 11) (3.3)
1

for i=1,2,...,Mt ÷1 , where p (D1 , t I Xt) represents the probability of the ith possible

data sequence given cumulative measurements Xt, and c is a normalization constant.

The likelihood p (x (t) Di, t, x) is given in terms of the Kalman filter innovations

as

p ~ ~ t [ , _I,.) =N (S ; t) i,( ] t l (3 . 4 )

where N(x, a. 2 ) denotes a Gaussian density with mean x and covariance OC2. The

estimated signal :i (t), is given in terms of the conditional channel estimates according

to

N.B, ( 0 =E b-,,,,(tl t-1) A.(t-n) (3.5)
R-O

where bi, n (t I t -1) is generated by the Kalman filter equations discussed in Chapter

I. The estimate bi, n (t It-I) can be shown to be exactly equal to the conditional

mean of the channel coefficients an (t), under the AR process model in Equation(3.2)

when conditioned on data sequence Di, t. Thus,
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bj,.!ý t t-1) =E [b. (t) X ,-,,] (3.6)

From Equations (3.3) and (3.4), it is seen that the optimum MAP sequence

estimator requires a bank of W' Kalman filter channel estimators, each conditioned on

a different D1 , t. The MAP probabilities of each sequence are then obtained as a product

of the corresponding innovations likelihoods.

By using the concept of reduced state sequence estimation (RSEE), the algorithm

becomes as follows (more detailed derivation can be found in [Ref.4]):

i. Define observation vectors

hi,(t) =[I di (t) ,oA.(t-1) , . ,d, (t-Nb)]1 (3.7)

ii. Compute conditional innovations covariances

a, ( t I t- 1) =hi (t) hir (t) + a (3.8)

iii. Compute signal estimates

n.O

iv. Compute conditional measurement update

bi (t I t) 41,(t I t-1) + 2 hi (t) (x(t) -fi,(t) )(3.10)
a2 (tI t-1)
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v. Update weighing probabilities

(3.11)

vi. Compute one step predictions

p(j..Nb I X')

S(tlp (D,.,,,IX,)

B. ADMISSIBILITY OF THE BLIND EQUALIZATION BY PARALLEL

KALMAN FILTERING

In order to be consistent with the comparison of the algorithms, we will consider

only linear, time invariant, stable, channel models and BPSK. Then, s(t) W {+1,-1}

therefore M=2 ,and the length of the channel impulse response is Nb+ 1 =3 (assumed).

Now M +•1 -=23- =8 different observations are needed. These are:

ho(t) ={-l, -1, -1}

h, (t) ={-i, -1, +1}

h2 (t) ={-i, +1, -1}

h3 (t) ={-0, +1, +1}

h4 (t) ={+1, -1, -1}

4 (t) ={+1, -1, +1}

h 6 (t) ={+3, +1, -1}

h7 (t) ={+l, +1, +1}

Assuming ar2=0.01 (small) and ae=1 (according to [Ref.4] O<oa<2), also
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2,-1 exp- (x(t) -9, (t) )IN=fj(),a tIt1 x- (3.13)

Substitution of all these parameters into the algorithm discussed in Section A yields the

performance with various fixed equalizer parametrization, which is shown in Figure

(3.1).

5,

4L
4..

(A)[-1,O.81 ; (B)[-1,o] ; (C)[1,-O.1] (D)[1,-4.81

0 100 200 300 400 500
Iterations

Figure 3.1 Smoothed Squared-Recovery-Error Time Histories for Different Fixed Equalizer
Parametrizations [(be ,bj)]

In Figure (3.1) all (bo,b 1) settings result in perfect performance though H(z)*1.

Also, the phase ambiguity problem which occurs in the extended Kalman filtering
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algorithm is solved. The exponential rise does not appear since we did not use a

smoothing filter, and (bo,b) setting (0,1) does not appear in the figure since the model

is undetermined for this case.

The performance of the algorithm for different initializations and the (b0 ,b,) setting

of (l,-0.6) is also studied. The initial values are shown as (x) and the final values are

shown as (o) in Figure (3.2). There is no convergence to local minima for the model,

so optimum results are achieved.

2 - x

1.5-

#-1

-0 .5 1,x

"-.5"x X-2X X 1
-2 -1 0 1 2

bO
Figure 3.2 Parameters Initial and Final Values for Blind Equalizer Adaptation by Parallel Kalman
M',tering

However, during our studies we observed that this algorithm does not work

properly all the time. It fails to converge to global minima 60% of the time. Also, it
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can not work as well as the extended Kalman filtering approach in nonminimum phase

systems. When the algorithm converges to local minima, there is no way to determine

the situation with this algorithm as in the Kalman filtering approach. So the algorithm

becomes unreliable, since we can not decide whether the global minima have been

reached or not by any means. The usage of multiple Kalman filters is another

disadvantage of this algorithm, when the cost is considered.
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IV. APPLICATION OF HIDDEN MARKOV MODELS TO BLIND

EQUALIZATION ALGORITHMS WITH KALMAN FILTERING

In communication systems the transmitted sequence s (t) is not a random

independent identically distributed (i.i.d.) sequence. Indeed forward error correction

(FEC) coding is applied to a message sequence u (t), in order to produce the

transmitted sequence s (t). At this point we realized that, none of the algorithms

known so far uses the statistics of the transmitted sequence s (t), which might be useful

for the channel equalization. Obviously, if we decide to use the statistics of the

transmitted sequence s (t) in equalization, we can combine the equalizer with the FEC

decoder. It is a fact that, most of the FEC coding systems which are used in

communication systems, are convolutional coders and decoders. They mostly use the

Viterbi soft decoding technique, which is an optimum estimation for Markov models.

So in our new approach we will try to combine the Kalman filtering algorithm with

hidden Markov models.

A. HIDDEN MARKOV MODELS

Consider a system that may be described at any time as being in one of a set of N

distinct states indexed by {l,2,3,...,N}. At regularly spaced, discrete times, the system

undergoes a change of state according to a set of probabilities associated with the state.

We denote the time instants associated with state changes as t= 1,2,3,... , and we denote
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the actual state at time t as qt. For a discrete time, first order, Markov model, the

probabilistic dependence is truncated to just the preceding state.

p[L=jcq,-=i, q. 2 =k, Q. 3=1, ... ]=pIq,=jqI,=i] (4.1)

Furthermore, those processes in which the right hand side of Equation (4.1) is

independent of time, lead to the set of state transition probabilities aij of the form

a,=p[q=j~q-1 =i] , lsi,jsN (4.2)

with the following properties

a0,0O V j,i

N (4.3)
ao,=1 . V i

j-1

The notation:

7,=p [q, =i] sisN (4.4)

is used to denote the initial state probabilities.

The concept of Markov models can be extended to include the case in which the

observation is a probabilistic function of the state, so the resulting model (which is called

a hidden Markov model) is a doubly embedded stochastic process with an underlying

stochastic process that is not directly observable (it is hidden) but can be observed only

through another set of stochastic processes that produce the sequence of observations.

As a result a hidden Markov model (HMM) for discrete symbol observations can be

characterized by the following elements:
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i). N, the number of states in the model,

ii). M, the number of distinct observation symbols per state. We denote the

individual symbols as

v= (V, .V2  V3 . .,VM)

iii). The state transition probability matrix A- (aij) where

au=p [q., =j I %=i] lsi, jsN (4.5)

iv). The observation symbol probability distribution, B= (bj (k) ), in which

bt (k) =p [ o,=v =j] (skM (4.6)

defines the symbol distribution in state j, where j=1,2,3,...,N. Also a typical

observation sequence of the model can be shown as

o= (ox, 02,0.3, .. I, OT)

v). The initial state distribution w= (?i}) in which

wi=p [ q,=i] lisiN (4.7)

So a complete specification of a HIMM requires specification of two model

parameters, N and M, specification of observation symbols, 0, and the specification of

the three sets of probability measures A, B and w. The compact notation

X= (A,B, 7r) (4.8)

"is used to indicate the complete parameter set of model. Given the appropriate values

of N, M, A, B and 7r, the HMM can be used as a generator to give an observation

sequence
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O= (o,,0,F 023,..., oT) (4.9)

where each observation ot is one of the symbols from V, and T is the number of

observations in the sequence. This model is the main model used for FEC coding, and

it works as follows:

1. Choose an initial state %1 -i according to the initial state distribution w,

2. Set t-=i,

3. Choose ot=Vk according to the symbol probability distribution in state i, i.e.,

bj (k),

4. Transit to a new state q,+i=j according to the state transition probability

distribution for state i, i.e., aij,

5. Set t=t+1; return to step 3 if t<c, otherwise, terminate the procedure.

Now, let us approach the problem from our point of view. We have the

observation sequence 0, which is produced by the model, described above, and we know

the model X. We need to choose a corresponding state sequence q= (q1 , q2 , • ,q)

that is optimal in some sense (i.e., best explains the observations).

We can define the posteriori probability as

(i_[0, =iIX] p[O,q =iIX]
P[OIX] N (4.10)

p(0XJ pE0, cj,=i I X]

Using - t (i) we can solve for the individually most likely state qt * at time t, as
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cl" =arg min,,-'- [7Y,( W I stsT (4.11)

Using this criteria iteratively the single best state sequence (path) can be found.

To find the single best state sequence q, for the given observation sequence 0, we need

to define the quantity

(4.12)
,(i) =-max,, . ....,,.P [q,, q 2 , • • -, , •ki, oj , 02, .. o, OilX1

that is the best score (highest probability) along the single path, at time t, which

accounts for the first t observations and ends in state i. By induction we can compute

it recursively as

6,(i)= may. 6,-(j) p[qf=i k.=j] p[o, Iq=i] (4.13)

To actually retrieve the state sequence, we need to keep track of the argument that

maximized Equation (4.13), for each t and j. The formal technique for doing the job

is based on dynamic programming methods, and is called the Viterbi algorithm. [Ref.5]

B. COMBINING KALMAN FILTERING ALGORITHMS WITH 1MM

In general, a message sequence u (t) is coded by a HMM. The block diagram

of an overall communication scheme is shown in Figure (4.1). The discrete coder states

z (t) where z (t) eZ= (1, 2, 3, ... , L and the output sequence s (t) are dependent

on the older coder states and the input sequence u (t) to the coder. Thus,

z(t+1) = F[z(t),u(t) (4.14)

s(t)= G[z(t),u(t)]
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sorecoder -a channel -iequalizer -*decoder

Figure 4.1 Block Diagram of the Communication System

As we stated in Chapter II before; the vector Xt represents the received signal values

and the vector Wt represents the state coefficients of the equalizer. So we can show the

output of the equalizer as

y(t) =( t)= WT(t) X,(t)+ e(t) (4.15)

where e (t) is estimation error described in Chapter I.

In extended Kalman filtering approach we assumed the channel changes slowly and

the model is defined in Equation (2.21). We account for drifts in channel parameters by

the recursion
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W, (t+1) ,W, (t) +v(t) (4.16)

Then combining the Equations (4.14), (4.15), and (4.16) we can represent the overall

model of equalizer and decoder as

z (t+1) = F[z (t) , u(t) I

w,(t+l) =w, (t) +v(t) (4.17)

0= G[z(t),u(t)]- W,(t) X,(t)+ e(t)

The difficulty with this state space model is that the state [Z (t), _W(t) J is a

mixture of a discrete component Z (t) and a continuous one ff(t).

The estimation algorithm is based on the fact that, given the sequences

7-t(t) = [z(1),z(2),... ,z(t)]

Y,(t) =[y(1),y(2),...,y(t)]

the estimate of w

E= [ W, Z, , T 1(4.18)

is well defined, and recursively computable by standard Kalman filtering techniques.

An overall recursion along the same lines as the estimation for hidden Markov

models can be devised for this case.

The suboptimal optimization is based on the definition

6,(i) =maxj p(2/(t-1) ,z(t) =i, Y,(t)) (4.19)

where ztJ (t-1) is the optimum path up to state z (t-1) =j. By induction we can

update 6 t (i) as
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-,(i .-.a, [p (y (t) t -1)(t-l),( t) =i, Y, ( t-1))p (z(t)=i z (t -1)=j) 6,_,(j)]

(4.20)

and keep track of the indices on the optimal path

J -arg max [p (y(t) 12,ý_ (t-1) , z(t) =i, Y, (t-1) )p(z (t) =i z (t-1) =j) 6,.(j) ]

(4.21)

The optimal path up to state z(t)=i is then updated as

A/(t)=2/-,(t-1) U z(t)=i (4.22)

Also we know all the possible previous states j and the state coefficient estimates of the

channel up to this state w,.1q) is already computed by Kalman filtering as stated in

Equation (4.18). So we can determine the optimum estimates of the channel state

coefficients by the following procedure:

@,ij) =0,-,(j) + jc,_,[G [j, u(t)] _(j X, (t) + e (t) (4.23)

W, (i) =most likelyj , (i Ij)

C. FEASIBILITY OF HMM AND KALMAN FILTERING APPROACH TO

BLIND EQUALIZATION

This new algorithm works almost perfect in linear, time invariant, stable, channel

models and BPSK. This new algorithm seems to be more capable than the previous

ones, and we applied it to more complex channels. We have used different feasible FEC

encoders (with different rates and constraint lengths), BPSK signaling, additive white
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Gaussian noise (AWGN) and different signal to noise ratios (SNR) in the studies. The

results are presented in Figures (4.2) through (4.4).

Since the perfect equalization requires

a(t) * b(t) = I

the complete impulse response of the combination of the channel and the equalizer must

appear as an impulse function, which is the case in our studies (shown at the left upper

corner of the figures).

By looking at the results, this new algorithm recovers the sent message without

errors after a couple of iterations, which are very small compared to the length of the

transmitted sequence. This algorithm works much better in high SNR values. Errors

do occur if SNR drops under 5 dB. but further studies are needed to determine the exact

margin. With this kind of performance, this algorithm can also be a candidate to address

the channel drifting problem.
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Figure 4.2 Channel and Message Estimation for Rate=I/2,Con.Len=3 Encoder with High SNR
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Figure 4.3 Channel and Message Estimation for Rate=1/3, Con.Len=3 Encoder with High SNR
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Figure 4.4 Channel and Message Estintation for Rate= 1/2,Con.Len=7 Encoder with High SNR
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V. SIMULATION AND RESULTS

We have simulated a flat Rayleigh fading channel and tried our new algorithm on

it, in order to see its feasibility in overall communication systems. The block diagram

of our simulation scheme is shown in Figure (5. 1).

I CHANNEL

PAOIMG

Figure 5.1 Block Diga of the Simlation Scheme i•t DBISK and Flat Rayleigh Fading

In the simulation DBPSK is used as a modulation scheme. DBPSK has hardware

simplicity and does not require phase coherency. It is popular for channels where the

phase shift changes slowly compared to the bit duration.

44



Also the industrial standard FEC encoder, with rate 1/2, constraint length 7 and

(133,171)s connections is employed. The encoder and its connections are illustrated in

Figure (5.2).

BTS BITS

Figure 5.2 Convolutional Encoder Rate= 1/2, Con.Len. =7

The flat Rayleigh fading channel model is also used and illustrated in Figure (5.3).

This model corresponds to a single path Rayleigh fading channel. In this channel there

is no frequency selective distortion, and the channel is very suitable to represent mobile

communication schemes. More detailed explanation about this model and its

computational representation can be found in [Ref.6].
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Figure S.3 Block Diagram of Flat Rayleigh Fading Channel Model

The results of the simulation using a signal to noise ratio (SNR) of 13 dB. is given

in Figure (5.4). As it can be seen from the results of our simulation, the combination

of equalizer and decoder by HMM and Kalman filtering approach performs fairly good

in complex channels and under channel fading conditions.
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Figure 5.4 Estimation of the Message Sequence in Flat Rayleigh Fading Channel Using DBPSK
and Rate= 1/2 FEC Code
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VI. CONCLUSIONS

An alternative algorithm for blind equalization of digital communication channels,

is derived and studied by using extended Kalman filtering and hidden Markov models.

This new algorithm seems more efficient since it takes the statistics of the transmitted

sequence into consideration. It seems to be more robust with respect to local minima,

and channel drifting problems.

Hardware implementation of this algorithm might be cost effective since it

combines two major components of a receiver, namely the equalizer and the decoder into

a single component.

Future studies can determine the overall performance of this algorithm under

different channel conditions and for different communication schemes.
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APPENDIX A. MATLAB SOURCE CODES

The algorithms described in Chapters II,m and IV were implemented using

MATLAB software and are listed below.

A. BLIND EQUALIZER FOR LINEAR, TIME-INVARIANT, STABLE

CHANNELS BY USING EXTENDED KAIMvIAN FILTER

% Filename: eqkalm.m
% Title : Blind equalizer for linear,time-invariant,stable channels by using Kalman filtering
% algorithm
% Date of last revision : 15 Jul 1993
% Comments : This program produces an array of random digital signal values,
% (either + or -1) to represent the message signal.The length of message signal
% depends on the sampling amount m(of course bigger m makes better
% estimation). Then this signal is applied to a channel such as:[x(t) x(t-l) ...
% x(t-n)] where the coefficiants defined by user.To estimate the equalizer
% coefficiants, a rectangular window over the received signal values, is going to
% be used such as[x(t) x(t-1) ... x(t-n)] where (n+ 1) represents the # of values
% taken into account by the window (and by the equalizer).In this way program
% tries to predict real coefficients of channel.If values match equalizer design
% will be perfect.
% Averaged squared recovery error due to the channel and qualizer,performance
% due to the different initializations and normalized squared error distributions
% can be plotted.
% Input variables :
% f : The coefficients of the channel as a vector
% i m: Sampling amount
% wt: Initial values of the coefficients at the equalizer as a column vector
% sel: Selection to continue with the calculation
% op: Options to plot different schemes
% Output variables :
% b : The estimated values of the channel coefficients by equalizer
% Associated functions : None

clear;
f=input('NOW ENTER the coefficients of your channel as vector.:');
m=input(' ENTER the value of m (sampling amount) ..................
sel=input(' ENTER I to continue .................
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S S% Produce inmage % %%
nwlength(f)-1;
y-sin(randn(1 ,(m+ n)));

while sel - -1
wt-'.Ol1%nes((n+ 1),(m+n));
wt(:,n)-input('ENTER the initial coefficiants for your equalizer as column vector..:');

% % % Arrangements % % %
xt-zeros((n+ 1),l);
et-zeros(1 ,m);
errt-zeros(1 ,m);
ay-eye((n+ 1),(n+ 1));
pt-diag([le- , le-li);
x -zeros(l,(n + 1));

% %% Pass message through the channel %% %
for i=n+I:m+n

x(i)=(-f(2:n+ 1).*x(i-1:-1:i-n)+y(i))/f(1);
end

% %% Kalman filtering % %%
for j =n+ l:m+ n

xt=(xoj:-l :j-n))';
wtl may~wt(: i-i);

ptl =ay~lpt~ay';
gt-ptl *c'*inv(c~pt1 *c' +.01);

et(:,j-n)= I-ytl;
errt(: j-n)=et(: j-n)Isqrt(c*pt*c' +.01);

end
%%% Results %%%
b=wt(:,m+n)'
pause

% % % Estimation errors % % %
for k=n+lI:n+m

r(k)=(b(1 :n+ I)*x(k:-1 :k-n)');
s(k) = (0)-r(k))^2;

end
%%% Plots %%%

disp('For the graphs you have the following options:');
disp('ENTER I to see aver. squ. error due to the chan. & equa.');
disp('ENTER 2 to see performance due to the different initial izations');
disp('ENTER 3 to see normalized squared error distributions');
op =input('ENTER 0 to quit .......
while op = =1,

plot(s(n+ 1: n +m))
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grid;
xlabel('Iterations');
ylabel('(u(k)-u(k)) );
pause
disp('For the graphs you have the following options:');
disp('ENTER 2 to see performance due to the different initializations');
disp('ENTER 3 to see normalized squared error distributions');
op-input('ENTER 0 to quit .........

end
while op= -2,

axis([-2 2 -2 2j);
plot(wt(l ,:),wt(2,:))

grid;
xlabel('bO');
ylabel('bl ');
pause
disp('For the graphs you have the following options:');
disp('ENTER 1 to see aver. squ. error due to the chan. & equa.');
disp('ENTER 3 to see normalized squared error distributions');
op=input('ENTER 0 to quit .........

end
while op= -3,

[n2,x2] =hist(errt,30);
k2=-4:.01:4;
gt= l/sqrt(2*pi)*exp((-(k2."2))/2);
m2=max(gt);
[xb2,yb2] = bar(x2,((n2/max(n2))*m2));
plot(k2,gt,xb2,yb2);
ort=mean(errt);
var= (std(errt)A2);
gtext(['mean = ',num2str(ort)]);
gtext(['var=',num2str(var)]);
pause
disp('For the graphs you have the following options:');
disp('ENTER 1 to see aver. squ. error due to the chan. & equa.');
disp('ENTER 2 to see performance due to the different initializations');
op=input('ENTER 0 to quit .........

end

disp(' ENTER 0 to exit to matlab .................

sel= input(' ENTER 1 to continue .................

end

end;
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B. BLIND EQUALIZER FOR LINEAR, TIME-INVARIANT, STABLE CHANNELS BY

USING PARALLEL KALMAN FILTERS

S Filename : parkal.m
S Title Blind equalizer for linear,time-invariant,stable channels
% by using parallel Kalman filtering algorithm
S Date of last revision : 18 Jul 1993
% Comments : This program produces an array of random digital
% signal values, (either + or -1) to represent the message
% signal.The length of message signal depends on the sampling

Sam ount m (of course bigger m m akes better estim ation).Then
% this signal is applied to a channel such as:[x(t) x(t-1) ...
% x(t-n)I where the coefficiants defined by user.To estimate
% the equalizer coefficiants, a rectangular window over the
% received signal values, is going to be used such as[x(t)
% x(t-1) ... x(t-n)] where (n+ 1) represents the # of values
% taken into account by the window (and by the equalizer).
% Also each symbol in the message alphabet is assigned to
% a specific Kalman filter.In this way program tries to
% predict real coefficients of the channel.At the end correct
% channel parameter estimations appear at least at one of the
% Kalman filters in the bank.If values match equalizer design
% will be perfect.( Program works for alphabet size 4 only)
% Averaged squared recovery error due to the channel and
% equalizer,performance due to the different initializations
% and normalized squared error distributions can be plotted.
% Input variables :
% f : The coefficients of the channel as a vector
% m : Sampling amount
% bi: Initial values of the coefficients at the equalizer as
% a column vector
% sel: Selection to continue with the calculation
% sec: Options to plot different schemes for different filters
% Output variables :
% b* : The estimated values of the channel coefficients by
% associated Kalman filter *.

% Associated functions : None

clc;

clear;
f=input('NOW ENTER the coefficients for the channel as vector(2 elements).:');
m-=input(' ENTER the value of m (sampling amount) ..................
sel=input(' ENTER 1 to continue .................
hold off
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while seI-- I
bi-inputCENTER the initial coelficiants for your equalizer as column vectr..:');
n-length(O)-I;
y -sign(randn(1 ,(m +n)));
r-zeros(1,(n+ 1));
zO-ones(l,(n+ 1));
zI -ones(l,(n+ 1));
z2=ones(l,(n + 1));
z3 -ones(1,(n + 1));
et-zeros(I ,m);
errt-zeros(1 ,m);
for i-n+l:m+n
r(i)=(f(1:n+1Yyi-in);

% r(i)=(-f(2:n+ 1).*r(i-1 :-1 :i-n)' +y(i))If(1); % Nonrecursive case
end

bO=bi;%
hO=[-1 -1];%
sigo=bO*hO' +.01; % FOR EACH FILTER
p0-0.25;%

bl =bi;
hl=[-1 ]
sigi =h1*hl'+ .01;
p1 =0.25;

b2=bi;
h2=[1 -11;
sig2=h2*h2' +.01;
p2 =0.25;

b3=bi;
h3=[1 1];
sig3=h3*h3'+.01;
p3=0.25;

for j=n+ 1:m+n
pOO-pO; %FOR EACH FILTER
p I =pi;
p2 2 -p2;
p33=p3;

sO=sum(bO.Th0');%
bO=bO+ ((1/sigO)Th0'*(roj)-sO));%
NO= II(sqrt(2*ipi*sig0))*exp((-(rGj)-s0).A2)I2*sig0); % FOR EACH FILTER
pO=NO*(p00+pl 1);%
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&1-sum(bI."hi');
hi -h I(1sg~l'rj-l)
N I- 1I(sqrt(2spi~sig1))*exp((-(roj)-s ).A2)/2*sig 1);
p1I - N1I p22 +p33);

s2-sum~b2.*h2');
b2 -b2+ ((Ilsig2)h2'*(roj)-s2));

p2-N2*(pO+pi 1);

£3 -sum(b3 .'h3');
W3 -bW + ((Il/sig3) *h3'*Nro)-s3));
N3 - 1/(sqrt(2*Ipi~sig3))*exp((-(raj)-s3).A2)/2*sig3);
p3=N3*(p22 +p3 3);

pn-pO+pI +p2+p3; %NORMALIZER
pO-pO/pn; %FOR EACH FILTER
p1 =pl/pn;
p2=p2/pn;
p3 =p3/pn;

bO-bO*(pO/(pO+pl))+bI*(pl/(pO+pl)); %FOR EACH FILTER
b I = b2*(p2/(p2 +p3)) +bW*(~p3/(,2 + p3));
b2=bO;
b3=bl;

end

bO' % FOR EACH FILTER
bi'
b2'
b3'

for k=n+1I:m+n
% zO(k)=(bO(1:n+ 1)'*r(k:-1:k-n)'); % NONRECURSIVE CASE
% zl(k)=(bl(1 :n+ 1)'*r(k:-1 :k-n)'); %

zO(k) =(zO(k-I :-1 :k-n)*(-bO(2:n +1)) +r(k))/bO(1);

sOM)=(l-(zO(k)A2)); %A2;
seO(k) = s(k)Isqrt(sigO);

sel (k) = si(k)Isqrt(sig 1);
end

sec=input(' ENTER 1 for 1&3;2 for 2&4 channels.........
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while sec -- I
S plot(bO(l,:),bO(2,:),'wo'); %
% plot(bi(l,:),bi(2,:),'wx') %
% axis([-2 2 -2 21);%
% bold on % TRAJECTORIES
% grid;%
% xlabcl('bO');%
% ylabei('bl');%
% pause%

% plot(slI(n +l:n +m),'w') %
% axis([0 500 -l5]); %
% grid; % RECOVERY ERRORS
% xlabel('lterations'); %
% ylabel('(u(k)-u(k)) %)
% pause %
[n2,x2J =hist(se0,30); %
k2=-4:.01:4; %
gt= I/sqrt(2*Ipi)*exp((-(k2.^2))I2); %
m2-max(gt); %
[xb2,yb2J =bar(x2,((n2/max(n2))*m2)); % HISTOGRAMS
plot(k2,gt,'w-',xb2,yb2,'w'); %
ort-mean(se0); %

gtext(['mean =',num2str(ort)]); %
gtext(['var =',num2str(var)]); %
pause %

sec=input(' ENTER 1 for 180;2 for 2&4 channels.........
end

while sec =2 % different parts are as shown above
% plot(blI (1, :),b I1(2, :),'wo');
% plot(bi(1 ,:),bi(2,:),'wx')
% axis([-2 2 -2 2]);
% hold on
% grid;
% xlabel('bO');
% ylabel('bl');
% pause

% plot(s I(n +1:n +m),'w')
% axis([0 500 -1 5]);
% grid;
% xlabel('Iterations');
% ylabel('(u(k)-u(k))')
% pause
[n2A2=hist(sel ,30);
k2=-4:.01 :4;
gt= I Isqrt(2*pi)*exp((-(k2.A2))/2);
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m2-max(gt);
[xb2,yb2 =-bar(x2,((nm2x(n2))*m2));
plot(k2,V,'w-',xb2,yb2,'w');
ort-mean(sel);
var=(std(sel)A2);
gtext(['mean- ',num2str(ort)]);
gtext(rvar- 'num2str(var)); %
pause

sec-input(' ENTER I for 1&3;2 for 2&4 channels ................. :)

end

hold on
sel-input( ENTER I to continue ................. :9);

end

end;

C. BLIND EQUALIZER FOR LINEAR, TIME-INVARIANT, STABLE CHANNELS

BY USING KALMAN FILTER AND 11MM ALGORITHM

% Filename: trynew.m
% Title Blind equalizer for linear,time-invariant,stable channels
% by using Kalman filtering and HMM algorithm
% Date of last revision : 25 Aug 1993
% Comments : This program produces an array of random digital NRZ, BPSK
% signal values, (either + or -1) to represent the message
% signal.The length of message signal depends on the sampling
% amount m(of course bigger m makes better estimation).Also
% applies a FEC code by HMM rate choosen by the user.Then
% this signal is applied to a channel such as:[x(t) x(t-1) ...
% x(t-n)] where the coefficiants defined by user.To estimate
% the equalizer coefficiants, by Kalman filtering and HMM
% approach.Overall impulse response of the system, sent and
% recived sequences are plotted as well as the errors due to
% the equalizer
% Input variables :
% m : Length of the message
% Output variables :None
% Associated functions : bpskgen.m
% conenc.m
% awgn.m
% eqcondec.m

m•=input('ENTER THE LENGTH OF MESSAGE YOU WANT:');
mes-=bpskgen(m);
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sig -conenc(mes);
an -zeros(sizs(sig));
num - [1,0.6,0.4,0.31; den =zeros(size(num)); den(1) =1;
% num-[1,O]; den=[l,-0.6];
xt-filter(num,den,sig); % channel
%xn-xt; % no noise
xn-awgn(xt,0.277); % 13 dB SNR
%xn-awgn(xt,0.447); % 5 dB SNR
%xn-awgn(xt,0.577); % 3 dB SNR
%xn-awgn(xt, 1); % 0 dB SNR
h =dimpulse(num,den,20);
[info,tmax] =eqcondec(xn,h);
pause
subplot(223),plot(mes(l :tmax),'w'), title('actual message')
subplot(224),plot(mes(l :tmax)-info(l :tmnax),'w'), tide('errors')
end % of program

function Y - awgn(Xsigma)
% AWGN GENERATOR
% 07-31-1993
% Awgn is an m-file that adds awgn noise to the matrix X
% Where sigma is standart deviation of the noise
% Ec/No- 1I/(2*sigmaA2).
[rr,ccJ =size(X);

W =randn(rr,cc)+ i*randn(rr,cc);
Y=X+sigma.*W;
disp('AWGN IS ADDED TO SIGNAL');

function u =bpskgen(k)
% BPSK GENERATOR
% 08-01-1993
% This m-file accepts k the number of bits that will be returned
% in the vector u which is a BPSK sequence of I+ 1,-i)
u =sign(randn(size(l :k)));
disp('A random message is generated and coded in bipolar NRZ form');

function s=conenc(u)
% CONVOLUTIONAL ENCODER
% 07-31-1993
% This m-file is a feedforward convolutional encoder for state transition
% matrix F,output sequence matrix G and input message matrix u. The number
% of convolution schemes can be increased by adding F & G matrices for new
% rates.
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disp('To use rate- 1/2 convolutional encoder ENTER I');
disp('To use rate- 1/3 convolutional encoder ENTER 2');
disp('ro quit encoding ENTER 0');
sel -input("')
while sel = - 1,

F-[1,2;
3,4;
1,2;
3,4];

G=[0,-II,-1, 1,1,-i, 1,-i;

xffl;

s =zeros(size(G(:, 1)'));
for t= 1 :length(u)

x=F(round(x),round(l.5+u(t)/2));
if x==1,

sf=G(:,(round(x) + round(1.5 +u(t)/2)));
elseif x= =2,

sf=G(:,(round(x) + 1+ round(1.5 + u(t)/2)));
elseif x-= = 3,

sf= G(: ,(round(x) + 2 + round (1.5 + u(t)/2)));
elseif x= =4,

sf= G(: ,(round(x) + 3 + round(1.5 + u(t)/2)));
end % for if statement
s = [s,sf'];

end % for for loop
disp('Message is encoded');
disp('To quit encoding ENTER 0');
sel = input(")
end % for while loop
while sel = =2,

F=[1,5;
1,5;
2,6;
2,6;
3,7;
3,7;
4,8;
4,81;

o,-1,1,-I,-1, 1,-i, 1,-I, 1, 1,-i, 1;
0,-I,1,-1, 1,-i, 1,-i, 1,-I, 1,-i, 1];

x=1;
s =zeros(size(G(:, 1)'));
for t= :length(u)
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x - F(round(x),round(l.5 + u(t)/2));
if x--112,

sf- G(:,(round(x) + round(l.5 + u(t)/2)));
elseif x==314,

sf=G(:,(round(x) + 1+ round(1.5 + u(t)/2)));
elseif x- - 516,

sf-G(:,(round(x) + 2 + round(1.5 + u(t)/2)));
elseif x- =718,

sf- G(: ,(round(x) + 3 + round(l.5 + u(t)/2)));
end % for if statement
s=[s,sf];

end % for for loop
disp('Message is encoded');
disp('To quit encoding ENTER 0');
sel = input(")
end % for while loop

function [uh,tmax] =eqcondec(x,h)
% EQUALIZER AND CONVOLUTIONAL DECODER
% 07-30-1993
% This m-file is a channel equalizer and convolutional decoder for state
% transition matrix F,output sequence matrix G ,channel parameter matrix
% x and input signal s.
% Simply uses the Kalman filtering algorithm with Hidden Markov Models.
% The number of convolution schemes can be increased by adding F & G matrices
% for new rates
disp('To use rate= 1/2 convolutional decoder ENTER 1');
disp('To use rate= 1/3 convolutional decoder ENTER 2');
sel = input(")
if sel = = I,

F=[1,2;
3,4;
1,2;
3,4];

end % for if statement
if sel = =2,

F--[I,5;

1,5;
2,6;
2,6;
3,7;
3,7;
4,8;
4,8];
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end % for if statement

nf-lengtli(G(: .1));
ns-Iength(F(:,l));
n-iS5; % order of the filter
th -zeros(n,ns);
th(1 ,:)-5.O*ones(1 ,ns);
e2-zeros(ns, 1);

P-=I *eye(n);
tmin-round(nlnf)+ 1;
tmax-floor(100/nf)-l;
point =zeros(tmax + 1 ,ns);
uhat=zeros(tma+ 1,ns);
for tk-tmin:tmax,

phi =toeplitz(x(tk*nf+ 1 :tk*nf+ nf),x(tk*nf+ 1:-i :tk*nf-n +2))';
facti =P*phi;
fact2 -fact' V*phi;
fact= inv(eye~ength(fact2)) + fact2);
K -factlI fact;
en2 =inf*ones(ns, 1); % start error for new layer at infinity
if ns= =4,

for j =1: ns % states
for i= 1:2 % inputs
m=F~ji);
if M==I,%

v=G(:,(m+i))-phi""th(:j);%
elseif m= =2,%I

v =G(:, (m +1I+i))-phi'N*th(:,j); % RATE 1/2
elseif m = = 3,%

v=G(:,(m+2+i))-phi'*th(:,j);%
elseif m ==4,%

end%
etexnp=e2(j)+v'*fact*v;
if etemp < en2(m),

en2(m) = etemp;
thn(: ,m)=th(: j) + Kv;
point(tk + I,m) =j;
uhat(tk + 1,m) =i;

end % for if statement
end % for loop of i

end % for loop of j
end % for while loop
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if ns--8,
for j -1:ns % states

for i=-1: 2 % inputs
mumFoji);
if m= -112,%

elseif m = = 314,%
v-G(:,(n+ 1 +i))-phi'*th(:,j);%

elseif m = = 516, % RATE 1/3

elseifm = =718,%
v=G(:,(m+3+i))-phi'*th(:,j);%

end%
etemp=e20j)+ v'*fact*v;

if etemp < en2(m),
en2(m) =etemp;

puint(tk + 1,m) =j;
uhat(tk+ 1,m)=i;

end % for if statement
end % for loop of

end % for loop of j
end % for while loop
tb-thn;
e2 = en2;
P =P-fact I fact~fact I';

end
[em,m] = min(e2);
thf=th(: ,m);
% estimated message
while m - = 0,

uh(tk)=2*uhat(tk+ 1 ,m)-3;
m-point(tk+ I,m);
tk-tk-1;

end
disp('Signal is decoded, now look to the graphs');
pause

clg;
hold off
c -conv(h,thf);
subplot(22 1), plot(c, 'ow '),title('impulse resp of ch +eq')
%nu =min([length(u), length(uh)]);
subplot(222),plot(uh(1 :tmax), 'w'), title('estimated message')
end % of program
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D. SIMULATION OF THE HMM AND KALMAN FILTERING ALGORITHM IN

FLAT RAYLEIGH FADING CHANNEL

% Filename: simul.m
% Title Simulation of combined equalizer and FEC decoder (1MM and
% Kalman filtering algorithm) in flat Rayleigh fading channel
% Date of last revision : 15 Sep 1993
% Comments : This program simulates the combined equalizer and FEC decoder
% (HMM and Kalman filtering algorithm) in flat Rayleigh fading
% channel. Works similar to previuos programs, uses DBPSK
% instead of BPSK.Industrial standart, code rate 1/2 & constraint
% length 7 FEC encoder is employed
% Input variables :
% m : Length of the message sequence
% Output variables :None
% Associated functions : awgn.m
% bpskgen.m
% conenc64.m
% difecod.m
% pskmod.m
% fade.m
% pskdmod.m
% eqcod64.m

m=input('ENTER THE LENGTH OF MESSAGE YOU WANT:');
mes=bpskgen(m);
cme=conenc64(mes,F64,G64);
len =length(cme);
dcm =difecod(cme);
sig =pskmod(dcm,7);
sigI =sig';
sig2=sigl(:);
sig3 =exp(i*pi/4)*sig2;
disp('POWER IS SPLITIED TO I & Q CHANNELS');
I=fade(0.01,Qen+ 1)*7);
Q=fade(0.01,(ien+ 1)*7);
sig4=I.*real(sig3) +j*(Q.*imag(sig3));
disp('Rayleigh fading is applied to signal');
sig5 = awgn(sig4,0.277);
[cmm,a] =pskdmod(sig,7,len);
[info,tmax] =eqcod64(cmm,F64,G64);
pause
subplot(21 l),plot(mes(l :tmax),'w'), title('actual message')
subplot(212),plot(info(1 :tmax),'w'),title('received message')
pause
print -dmeta;
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CIS;
subplot(21 1),plot(mes(1 :tmax)-info(1 :tmax),'w'), title('errors')
end % of program

function s-conenc64(u,F64,G64)
% CONVOLUTIONAL ENCODER
% 08-30-1993

% This rn-file is a feedforward industrial standart convolutional encoder
% for state transition matrix F64,output sequence matrix G64 and input
% message matrix u. F64 & G64 matrices are given as a file named incod64.mat
% Be sure to load that file before working with this function
X- 1;
s =zeros(size(G64(:, 1)'));
for t =1:ength(u)

x =F64(round(x),round(1 .5 +u(t)/2));
if X= = 119,

sf=G64(: ,(0+ round(1 .5 +u(t)/2)));
elseif x == 2110,

sf-G64(:,(2+ round(1 .5+u(t)/2)));
elseif x= =31 11,

sf- G64(: ,(4 + round(I .5 + u(t)/2)));
elseifx = =41 12,

sf= G64(: ,(6 +round(1 .5 +u(t)12)));
elseif x ==51 13,

sf= G64(: ,(8 + round(1 .5 + u(t)12)));
elseif x = =61 14,

sf=G64(:,(10+round(1 .5+u(t)/2)));
elseif x = = 7115,

sf= G64(: ,(1 2 + round(1 .5 + u(t)/2)));
elseif x = = 8116,

sf =G64(:,(14 +round(1 .5 +u(t)12))),
elseif x = = 17125,

sf= G64(: ,(16 + round(1 .5 + u(t)/2)));
elseif x == 18126,

sf= G64(: ,(1 8 + round(1 .5 + u(t)12)));
elseif x = = 19127,

sf=064(: ,(20 +round(1 .5 +u(t)/2)));
elseif x ==20128,

sf=G64(:,(22+ round(1 .5 +u(t)/2)));
elseifx = =21 129,

sf= G64(:,(24 + round(1 .5 + u(t)/2)));
elseif x = = 22130,

sf= G64(: ,(26 + round(I .5 + u(t)12)));
elseif x = = 2313 1,

sf= G64(: ,(28 + round( 1.5 + u~t)I2)));
elseif x = =24,132,
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sf-G64(:,(30+ round(1.5 + u(t)/2)));
elseif x--33 41,

sf= G64(: ,(32 + round(1.5 + u(t)/2)));
elseif x - - 34142,

sf=0G64(:,(34+round(I.5 +u(t)/2)));
elseif x= =35 143,

sf-G64(:,(36 + round(l.5 + u(t)/2)));
elseif x-= 36144,

sf= G64(:,(38 + round(l.5 + u(t)/2)));
elseif x= =37145,
sf=G64(:,(40 + round(l.5 + u(t)/2)));

elseif x==38 146,
sf=G64(:,(42+ round(l.5 +u(t)/2)));

elseif x= =39 147,
sf=G64(: ,(44 + round(1.5 + u(t)/2)));

elseif x= =40148,
sf= G64(:,(46 + round(1.5 + u(t)/2)));

elseif x= =49157,
sf= G64(: ,(48 + round(1.5 + u(t)/2)));

elseif x= =50158,
sf= G64(:,(50 + round(1 .5 + u(t)/2)));

elseif x= =51159,
sf= G64(: ,(52 + round(l.5 + u(t)/2)));

elseif x= =52160,
sf=G64(:,(54+round(1.5 +u(t)/2)));

elseif x= =53161,
sf= G64(: ,(56 + round(1.5 + u(t)/2)));

elseif x = =54162,
sf= G64(:,(58 + round(1.5 + u(t)/2)));

elseif x= =55163,
sf= G64(: ,(60+ round(l.5 + u(t)/2)));

elseif x= =56164,
sf= G64(: ,(62 + round(1.5 + u(t)/2)));

end % for if statement
s=[s,sf'];

end % for for loop
disp('FEC is applied to Message(ENCODED)');

function [uh,tmax] =eqcod64(x,F64,G64)
%6 EQUALIZER AND CONVOLUTIONAL DECODER
% 08-21-1993
% This m-file is a channel equalizer and convolutional decoder for state
% transition matrix F64,output sequence matrix G64,channel parameter matrix
% x and input signal s.
% Industrial standart Rate 1/2 code with constraint length 7 is used F64 &
% G64 matrices are defined in incod64.mat. Be sure it is loaded.
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% Simply uses the Kalman filtering algorithm with Hidden Markov Models.
% The number of convolution schemes can be increased by adding F & G matrices
% for new rates
nf=lengtb(G64(:, I));
ns - length(F64(:, 1));
n=15; % order of the filter
th -zeros(n,ns);
th(l,:)-5.0*ones(l,ns);
e2 -zeros(ns, 1);
P- I'eye(n);
tmin-round(n/nf)+ 1;
tmax-floor(100/nO-1;
point =zeros(tmax+ l,ns);
uhat-zeros(tmax + l,ns);
for tk=tmin:tmax,

phi =toeplitz(x(tk*nf+ I :tk*nf+ nf),x(tk*nf+ 1:-I :tk*nf-n + 2))';
factl -P*phi;
fact2 =factI '*phi;
fact = inv(eyeoength(fact2)) + fact2);
K = fact I *fact;
en2=inf*ones(ns,l); % start error for new layer at infinity
for j - 1:ns % states

for i=1:2 % inputs
m=F64(j,i);
ifm==119,

v =G64(:,(0+ i))-phi'*th(:,j);

elseif m= =21 10,
v = G64(:,(2 + i))-phi'*th(:,j);
elseif m= =31 11,

v = G64(:,(4+ i))-phi'*th(:,j);
elseif m= =41 12,

v = G64(:,(6 + i))-phi'*th(: j);
elseif mn= = 5113,

v = G64(:,(8 + i))-phi'*th (:,j);

elseif m==6114,
v-- G64(:, (10 +i))-phi'*th (:,j);

elseif m= =71 15,
v = G64(:,(12 + i))-phi'*th(:,j);

elseif m= =8I 16,
v =G-64(:,(14 + i))-phi'*th(,;

elseif m = = 17125,
v = G64(:,(16 + i))-phi'*th(:,j);

elseif m= = 18126,
v =G64(:,(18 + i))-phi'*th(:j);
elseif m= = 19127,

v = G64(:,(20 + i))-phi'*th (:,j);

elseif m= =20128,
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v -G64(:,(22 + i))-phi'%t(: j);
elseif m - m-21129,

v -G64(:,(24+ i))-phi'*th(: j);
elseif m -- 22130,

elseif m ==-2313 1,

eiseif m - - 24132,
v-G64(: ,(30 +i))-phi""th(:j);
elseif m==33141,.

elseif m ==34142,
v=-G64(: ,(34+ i))-phi'*th(: j);
elseif m = = 35143,

v -G64(: ,(36+ i))-phi'*th(: ,j);
elseif m == 36144,

elseif m= =37 145,
v =G64(:,(40 + i))-phi'*th(: ,j);

elseif m = = 38146,

elseif mn = = 39147,

elseif m = = 40148,

elseif m = =49157,
v = G64(:,(48 + i))-ph i'*1 tb (:,j);

elseif m = = 50 158,

elseifm = =51 159,
v=G64(: ,(52+ i))-phi'*th(:,j);

elseif m= =52160,
v =G64(:,(54+ i))-phi""th(: j);

elseif m= =53161,

elseif m = =54162,
v = G64(: ,(58 + i))-phiti*th(: ,j);

elseif m = =55 163,

elseif m = =56164,
v=G64(: ,(62+ i))-phi'*th(: ,j);

end
etelnp =e2j) +v'*fact*v;

if etinp < en2(m),
en2(m) =etemp;
thn(:,m) =th(:,j) +Kv;
point(tk+ I,m)=j;
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uhat(tk+ l,m)=i;
end % for if statement
end % for loop of i

end % for loop of j
th = thn;
e2-en2;
P=- P-factl *fact*fact I';

end
[em,mJ =min(e2);
thf=th(:,m);
% estimated message
while m - = 0,

uh(tk) = 2*uhat(tk + l,m)-3;
mfpoint(tk + l,m);
tk=tk-1;

end
disp('Signal is decoded');

function out =pskmod(in,N)
% PSK MODULATOR
% 09-03-1993
% This M file accepts the differentially encoded vector in
% and # of samples per symbol N. Then generates a matrix
% with dimensions Qength(in)xN)
out = in'*ones(I,N);

disp('MESSAGE DPSK MODULATED');

function [out,a] =pskdmod(sig,N,m)
% PSK DEMODULATOR
% 09-02-1993
% This function accepts fading and AWGN effected sig,
% # of samples per symbol N and total # of symbols m
% Then for each symbol takes the difference and sum of
% present and past symbol sums and squares their absolute
% values. If difference<sum decides input bit is 0(rep. -1)
o =ones(l ,m);
for i=2:m+ 1,

dif(i-l) =abs(sum(sig(i,:))-sum(sig(i-l,:))).^2;
su(i-l)=abs(sum(sig(i,:))+sum(sig(i-l,:))).^2;
met(i- 1) =dif(i- l)-su(i- 1);
if met(i-1)<0;

o(i-l)=-1;
end

end
a-met;
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out-O;
dispCSIGNAL IS DEMODULATED');

function difout,=difecod(n)
% DIFFERENTIAL ENCODER
% 08-31-1993
% This M file accepts an input vector n(which is bipolar NRZ
% coded form of output sequence) and differentially encodes it
% with a reference bit l(which will be inserted at the beginning
% of the vector.
y =[1 ,zeros(l ,length(n))];
for i- 1:length(n),

if n(i)- =-I,
n(i) =0;

end
y(i + 1)-=xor(n(i),y(i));

end
for j =1 :length(n),

if n(i)= =0,
nQi)=-l1;

end
if y(i)= =0,

y(i)=-l;

end
end
difout=y;
disp('MESSAGE DIFFERENTIALLY ENCODED');

function out =fade(dps,n)
% FADING GENERATOR
% 09-04-1993
% This function accepts differential phase shift dps and
% # of samples n. Then creates n normal distributed
% variables passes these through two RC filters
s=exp(-dps/2.146193);
ss = ((I -sA2)A3/(1 + sA2))A.25;
b=[ss];
a=[l -s];
t=randn(n, 1);
k=filter(b,a,t);
out=filter(b,a,k);
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